Statistical mechanics of the periodic Benjamin–Ono equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Mechanics of the Periodic Camassa-Holm Equation

The invariance of a Gibbs measure under the flow of the periodic CamassaHolm equation is shown to guarantee that most of its global solutions return infinitely many times to the vicinity of their initial state.

متن کامل

Statistical Mechanics of the Nonlinear Schr6dinger Equation

is unbounded below and the system will, under certain conditions, develop (selffocusing) singularities in a finite time. We show that, when s is the circle and the L 2 norm of the field (which is conserved by the dynamics) is bounded by N, the Gibbs measure v obtained is absolutely continuous with respect to Wiener measure and normalizable if and only if p and N are such that classical solution...

متن کامل

Quantum Statistical Mechanics. II. Stochastic Schrödinger Equation

The stochastic dissipative Schrödinger equation is derived for an open quantum system consisting of a sub-system able to exchange energy with a thermal reservoir. The resultant evolution of the wave function also gives the evolution of the density matrix, which is an explicit, stochastic form of the Lindblad master equation. A quantum fluctuation-dissipation theorem is also derived. The time co...

متن کامل

Mesoscopic virial equation for nonequilibrium statistical mechanics

We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nosé–Hoover) dynamics, and to extend to collective modes for models of heat-conducting lattices. A macroscopic virial t...

متن کامل

Statistical mechanics derivation of hydrodynamic boundary conditions : the diffusion equation

Considering the example of interacting Brownian particles we present a linear response derivation of the boundary condition for the corresponding hydrodynamic description (the diffusion equation). This requires us to identify a non-analytic structure in a microscopic relaxation kernel connected to the frequency-dependent penetration length familiar for diffusive processes, and leads to a micros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2019

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.5091737